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MOBILE SYSTEM FOR ECG SIGNALS COLLECTION AND PROCESSING IN REAL-TIME  

 

Abstract. The article considers a system for collecting and processing electrocardiogram signals using 
wearable electrocardiographs. Measurement of electrocardiogram signals from such devices imposes 
additional requirements for signal processing, as the measurement takes place without the participation 
of doctors. Accordingly, control over the quality of measurement is entrusted to patients. A pipeline for 
real-time processing of electrocardiogram signals was built. The system architecture and each stage of 
signal processing are described. The FIR filter is used to filter the signal to remove low and high 
frequencies that contain signal noise. To test the system, the cardiograms of various people were 
collected from a wearable electrocardiograph. For validation of the electrocardiogram signals, a 
convolutional neural network (CNN) approach was selected. Resulting CNN was trained on the collected 
dataset. Additionally, an algorithm for validating the entire record based on the decision rules was 
created empirically. Testing of algorithms prediction accuracy and performance was performed. Results 
of this testing led to the conclusion that the system can work with high accuracy in real-time. 
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Introduction. Various wearable devices allow 
to measure human biosignals outside of the 
hospital and provide analysis of these biosignals or 
share measurements with doctors for expert 
analysis. This process is called Remote Patient 
Monitoring (RPM)[1]. This approach brings a lot of 
benefits to the healthcare system, but at the same 
time, it brings challenges for automated data 
analysis. Even with highly accurate devices, there 
is no guarantee that data will be measured 
correctly by the patient. Measurements are done 
outside the hospital, and as a result, without 
control of measurement correctness from the 
doctor's side. 

Nowadays wearable devices for Lead I ECG 
measurement [2] have become widespread for 
Remote Patient Monitoring. Lead I ECG means the 
measurement of the signal between two 
electrodes located one the hands of the patient. 
These devices are designed to make short 
recordings of ECG signal for a heart health 
assessment, which can be done automatically or 
by manual doctor analysis. However, such an 
approach brings some challenges[3]: 

● Muscle noise - appears if the patient is 
moving their hands or making too much 
pressure on the device during 
measurement. 

● Baseline wandering - noise generated 
during the breathing process. 

● Signal inversion - happens if a patient has 
swapped the hand location (put left hand 
on the electrode for the right hand and 
vice versa). In this case, the signal will be 
inverted which may lead to incorrect 
automatic analysis. 

● Other measurement issues. Devices may 
be placed incorrectly(low contact with 
skin, too dry skin), so the recorded signal 
will be non-distinguishable from random 
noise. 

Each measurement might be reviewed by a 
doctor, even after automatic analysis. In practice, 
doctors are interested in reviewing only 
measurements marked as “bad” - signals which 
were classified by automated analysis as signals 
with the potential presence of illnesses. The 
presence of problems described above may lead 
to misclassification, and as result to the unjustified 
expenses for the patients and the unwanted load 
of the doctors. 

Various approaches for the ECG signal 
validation exist, but most of them were designed 
for validation of the signals from the holter 
devices (ECG recording under doctor’s control, or 
using other leads)[4-5], or are not suitable for the 
use on the smartphones for the real-time ECG 
signal validation due to computational 
complexity, or low resulting accuracy[6-7]. Based 
on described challenges, a method for the real-
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time ECG signal validation on the smartphone will 
be proposed in this paper.  

This paper is organized as follows: first, full 
system architecture will be described in detail, 
with emphasis on how system components 
interact. Next, a data pipeline and various 
methods for ECG data processing inside this 
pipeline will be described. After this, a CNN-based 
architecture for ECG signal validation will be 
proposed. The final section contains the 
evaluation of the results and a discussion of the 
future work on the system. 

 
System architecture 
The proposed system architecture consists of 3 

main parts(pic. 1): 
● hardware device  
● mobile application 
● backend application  

 

 
Pic. 1. System overview 

This paper focuses on the mobile application 
part. 

Hardware  device 
Lead I device for recording ECG with a sampling 

rate of 512 Hz. Device recording data to the buffer 
and streaming data over Bluetooth. Data 
bufferization is required to avoid packet loss, so 
the mobile application might be able to re-read 
missings packets. An algorithm for data integrity 
will be described in Section 3.2. Touch presence 
sensor tracks touch presence, to finish 
measurement if touch is absent. The high-level 
structure of the device  is shown below(pic. 2): 

 
Pic. 2. High-level device architecture 

 
Mobile application 
A mobile application designed for the data 

reading, processing, and transmission to the cloud 
service for further data analysis and sharing with 

the doctor for establishing a diagnosis. The mobile 
application structure is shown below(pic. 3): 

 
Pic. 3. Mobile application structure 

  
The purposes of each module shown above are 

following: 
● Bluetooth module: Communication with 

the hardware device(data reading) 
● Data filtration: Initial data pre-processing 

for further operations 
● Data visualization: visualization of 

collected signal to the patient in real-time 
with validations results. 

● Data validation(sample): Validation of 
each new sample with the convolutional 
neural network. 

● Data validation(full record): Rule-based 
algorithm for validation of recorded signal 
for the final decision about the validity of 
the full record. 

Cloud service 
Cloud service is responsible for data storage, 

deep data analysis, and sharing measurements 
with doctors for making a diagnosis based on 
doctor’s expertise and results of automated 
analysis.   

Data processing pipeline 
Pipeline overview 
A pipeline that triggers each time as new points 

are packed is received from the sensor. From a 
data perspective process organized as  follows(pic. 
4) : 

 
Pic. 4. Data pipeline structure 

 
Data reading 
Communication with the device built on the 

“pub/sub” model. Mobile application subscribes 
to data recording from the device. Each received 
packet has an index number. If a new packet has 
index n+2 while the previous has index n - it means 
that packet with index n+1 was last. The 
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application will retry to receive a packet with a 
given index. If failed - the whole record will be 
marked as corrupted and measurement will be 
canceled. The record length used for this paper 
experiment was 90 seconds. Due to the algorithm 
of data integrity, data visualization and processing 
may lag behind the process of data 
reading(Algorithm 1).  

Algorithm 1.  Data reading integrity verification 
algorithm 

Input. packet_index 
Output. None 
if packet_index -1 == last_received_index: 
return  
 else: 
 request_packet_by_index(packet_index -

1) 
 
Data filtering 
ECG is an electrical signal, and so it can be 

influenced by various types of noise. The most 
well-defined and easiest to counter type is power 
line interference. It happens when external 
alternating current influences ECG. Other types of 
noise include muscle noise which is caused by 
muscular electrical activity or noise caused by the 
movement of the person that conducts 
measurement. Influences of different types of 
noise on the ECG are shown below(pic. 5 - 7). 

 
Pic. 5 - ecg with baseline wandering 

 
Pic.6 - ecg without baseline wandering 

 

 
Pic. 7. Ecg noise caused by movement of the person 

ECG analysis is not a new technique, and so a 
lot of ECG filtering approaches were developed. 
Most popular are FIR[8] and IIR[9] filtering. They 
are used to remove the noise of specific 
frequencies from the signal, and so the use of 
them is associated with some challenges. Often 
noise frequencies may overlap with frequencies of 
P waves and T waves of ECG. In this case filtering 
of these frequencies would affect the morphology 
of these waves, which is inacceptable for most 
cases of ECG analysis. Hence, there are two 
options: 

● Remove the frequency band that includes 
all the noise and alter the ECG morphology 
making the signal irrelevant for analysis in 
most cases. This approach may be 
applicable in some of the cases, such as 
Heart Rate Variability (HRV) analysis - 
when it’s important to only accurately 
detect R waves. 

● Use a frequency band that doesn’t include 
P-wave and T-wave data and leave some 
noise in it. 

Fortunately, the frequency of the alternating 
current is 50 Hz or 60 Hz depending on the 
country, and this frequency may be excluded from 
the signal without any risk(Pic. 8). 

 
Pic. 8. Example of Power-line interference removal on 

ECG using IIR filtering 

 
On the picture below(Pic. 9), you may see an 

example of filtering of ECG signal with FIR and IIR 
filters. Raw signal is displayed on the top, 
bandpass FIR filter with all the valuable 
frequencies inside the band in the middle and IIR 
filter that totally removes low-frequency noise 
(baseline wandering) but alters the morphology. 
Bandpass FIR filter with cutoff frequencies of 0.5 
Hz and 40 Hz was selected for this 
implementation. 
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Pic. 9. Example of performance of FIR (green) and IIR 
(blue) filtering for noise removal on raw ECG signal 

(black) 

 
Data preparation 
For the data preparation was used 

normalization algorithm, to remove differences 
between  records of different  people related to 
the angle of the heart axis, which leads to the 
different projection of the signal: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋−𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)
, 

where X - ECG points to an array of length 1000. 
Data validation(sample) 
Data validation performs using CNN for ECG 

signal validation(described in Section 4). 

Validation performs on 1000 consecutive ECG 
points(2 seconds) with step 250 points(0.5 
second). Validation results is a probability of 
Interference results are stored as time series used 
for full record data validation(Section 3.6). 
Validation process and validation array forming 
for the full record validation shown on the picture 
below(pic. 10) 

 
Pic. 10. Data validation process 

 

Data validation(full record) 
Full record validation performs every time, new 

validations adds to the validations list, using the 
following algorithm(Algorithm 2): 

Algorithm 2.  Full record validation 
Input. validations_list 
Output. is_valid 
if len(longest_sequence_unvalid) >  

unvalid_sequence_treshold: 
return False 
if  count(unvalid_validations)  > 

unvalid_validations_treshold: 
return  False 
return True 
For record length 90 seconds (or 177 

validations for window 1000 and step 250), were 
defined next parameters: 

● longest_sequence_unvalid = 17 (which 
represents 10 consecutive seconds of 
signal which wasn’t recognized as ECG 
signal) 

● unvalid_validations_treshold = 88 (which 
represents value that equal to 50% of all 
validations performed for the record) 

CNN for ECG signal validation 
Deep convolutional neural networks (CNN) are 

known for their ability to learn complex visual 
patterns[11]. Therefore, the given technique was 
chosen for automatic ECG signal validation, since 
there is a visual difference between clear and 
corrupted signals as shown in the picture (pic .11). 
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Pic.11. Examples of bad (red) and good (green) ECG 

signals. 

 
Approach description 
Autoencoders (AE) are neural network 

architectures that in an unsupervised manner 
learn data representation by compressing and 
reconstructing it as close as possible to the input 
[12]. 

Given network is trained with a regular 
backpropagation algorithm, where loss function 
measures the difference between the actual 
object that was passed as the input and 
reconstruction at the output. In the case of ECG 
samples, the suitable loss is a mean squared error 
between input ECG and then reconstructed signal. 

How to use the described approach for ECG 
validation, or for anomaly detection in particular? 
In this case, the task is to separate a set of “good” 
ECG signals from any other type of signal with 
significantly different morphology, which is called 
anomalies, or outliers. Such samples can occur 
because of muscle noise, movements, electrical 
inference, other noises, or even some inputs that 
did not contain any ECG signs. The most 
straightforward way to tackle this problem is to 
build a supervised learning model that solves 
binary classification for “noise”/”clear ECG”. 
However, in this case, the algorithm will not be 
robust for new unseen anomalies that weren't in 
the labeled dataset, so the model has to be 
retrained on an updated dataset that includes 
new anomalies. This approach is inconvenient for 
production use, thus a more stable approach will 
be described further. 

To solve a given problem with AEs, the 
reconstruction error is used as the criteria of the 
anomaly. The given hypothesis is valid because if 
AE is trained only on ECG data and has not seen 

any other type of signal, it will learn to reconstruct 
them quite accurately (with low mean squared 
error) [10]. In case of passing some noisy ECG or 
other non-ECG signals to the trained AE, it won’t 
be able to reconstruct it (reconstruction error will 
be high compared to clear ECG samples).   

In general, the algorithm of using AEs for 
anomaly detection contained the following steps: 

1. Gather data of only correct ECGs 
2. Train an AE to compress and reconstruct 

them 
3. Calculate the average MSE (mean squared 

error) between ECGs and their reconstructions 
4. Based on some samples of anomalies find 

a threshold alpha, where decision logic will be: 
a. if error > alpha: this is an anomaly 
b. else: it is good ECG 
The above-described approach seems to work 

pretty well, but the major drawback is that there 
is no control on what exactly models take into 
account while deciding which ECG is good or bad. 
From the human expert perspective for current 
applications, such as ECG where the R peaks can 
be clearly seen (or probably not 100% clearly, but 
distinguishable by human experts). But the 
current model can’t assure that it takes into 
account exactly present and visible R peaks, and 
detailed empirical analysis proves this point. We 
have seen samples, where reconstruction error 
was low, below the threshold, but there were no 
R peaks present and the opposite - an ECG sample 
with clearly seen R peaks could have had high 
reconstruction error. 

The solution is in adding the second output to 
the model that predicts R peaks on the ECG 
sample making the model multiheaded. Now, the 
described model will not just reconstruct the ECG 
signal, but also predict R peaks on it. If both R 
peaks will not be found and reconstruction error 
is low, the ECG sample is accepted if the good one, 
if any of the conditions fails - a sample will be 
rejected as an anomaly. Thus, the algorithm 
changes to the following: 

1. Gather data of only correct ECGs 
2. Label R peaks on the ECGs 
3. Train an AE to solve 2 tasks simultaneously: 
a. compress and reconstruct ECG signal (MSE 

error) 
b. find R peaks on the ECG (categorical cross-

entropy error) 
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4. Calculate the average MSE (mean squared 
error) between ECGs and their reconstructions 
and save it as THRESH 

5. Based on some samples of anomalies find 
a threshold alpha, where decision logic will be: 

●  if error <= alpha AND at least one R peak 
found on ECG: it’s good ECG 

● else: it’s an anomaly 
 
Model architecture 
The resulting architecture of CNN autoencoder 

with two heads for ECG signal validation, is shown  
below(pic. 12): 
 

 
Pic. 12 Architecture of CNN for ECG signal validation 

The network accepts 1000 points array as 
input, and has 2 outputs: 

● ECG: reconstructed ECG sample 
● peak: sparse vector with ones on points 

that correspond R-peaks on ECG signal 
 
Dataset  and model training 
The training dataset contained 9392 pairs (raw 

signals, sparse vector with R-peaks). The 
validation set contained 3131 corresponding 
pairs. To adjust thresholds 6029 samples with 

corrupted signal were used. 
The network was trained with a regular 

backpropagation algorithm using Adam optimizer 
[13-14] with a learning rate of 0.001 during 150 
epochs. Learning curves for total and separate 
losses (MSE and binary cross-entropy) change are 
shown on plots (pic). According to the plots, the 
learning stage performed well and validation all 
validation losses are low but slightly higher than 
training, reflecting the absence of overfitting(Pic. 
13). 

 
Pic.13. Losses during training 

 
Results evaluation 
Prediction performance 
After training, a model was evaluated on a 

validation set and a set of corrupted samples. The 
resulting mean average error and maximal 
probability  for each set can be seen in the table 
below(Table 1). 

 
Table 1  

Resulting mean average error and maximal 
probability 

 Validation Corrupted 
samples 

MAE 0.0278201 0.02929014132 

Mean max 
proba (MMP) 

0.8442083 0.7556953 

 
Based on obtaining results, decision thresholds 

were set to 0.075 for MAE and 0.45 for mean max 
probability. Given values provide quite an 
accurate separation between valid and noisy 
signals. An example of algorithm performance 
(MAE= 0.01609, MMP=0.9563) is shown on pic. 
with performance(Pic. 14). 
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Pic. 14. Model output (blue - original signal, yellow – 

reconstructed signal, green R-peak position 
prediction, dashed grey - MMP threshold) 

 
Application performance 
Results of data validation for samples of  length 

1000 points are shown  below(Pic.15) 

 
Pic. 15. Model interference speed performance 

Received results display that’s average model 
interference lasts for 0.2 seconds, which allows 
validating data in real-time with a window of 2 
seconds(1000 points) and step of validation 0.5 
seconds(250 points). Statically speaking validation 
ends earlier than the new batch for the validation 
becomes available. Which allows us to provide 
near real-time sample validation.   

Conclusions 
This article was dedicated to the processing of 

the ECG signals collected from wearable devices. 
Such devices have become very popular in 
healthcare for remote patient monitoring. 
However, since measurements with wearable 
devices are taken by patients without doctors' 
control, it may lead to incorrect measurements 
and as result to improper diagnosis with 
automated algorithms for disease detection, or by 
doctor manual review. 

Typical problems related to measurements 
from wearable devices were described, and the 
architecture of the system for ECG signal 
collection and processing was developed. The 
architecture of the system includes algorithms for 
the data integrity check, algorithm for the noises 
removal, and data normalization for the ECG 
signal quality validation as the last stage. 

For ECG signal quality validation were trained a 
convolutional neural network on the dataset 
collected from the wearable ECG monitor. This 
dataset was spilled on a dataset with a valid signal 
for training, and a corrupted signal for the test. All 
algorithms were deployed to the mobile 
application and works in near real-time mode, 
which allows giving fast feedback to the users 
about how properly they are measuring ECG 
signals. 

In the future, might be suitable to design a 
more intelligent algorithm for the full record 
validation, since the current implementation was 
designed empirically. Also might be suitable to 
optimize algorithms for the lower analysis window 
size for faster feedback about measurement 
quality. 
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