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Abstract. In this paper, we describe our studies that compare different types of deep neural networks 

for automated arrhythmia type classification using the ECG signal. As a source of data and the 
evaluation benchmark, we took the Physionet Challenge 2017 dataset. In addition to conventional 
accuracy metrics of the models, we also evaluated the complexities of the models by the number of 
trainable parameters, to find an optimal trade-off. As a result, our studies bring an evaluation of 
contemporary deep neural networks architectures on Atrial fibrillation detection task and propose 
DenseNet as the most efficient in terms of accuracy and computational efficiency. 
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Introduction. Nowadays, the classification of 

ECG signal for heart disease detection is a well-
known problem. However, various new methods 
arise, so it is still a broad field for research. A 
growth of attention to this problem significantly 
increased after the publication of Stanford ML 
group [1], in which they achieved human-level 
arrhythmia detection using deep neural network 
(NN) with residual connections. The novelty of the 
described method was in applying a state-of-the-
art NN topology from computer vision to a 
significant amount of ECG records with 
corresponding labeled diagnoses. Another 
advantage of the proposed approach is that it 
does not requireany feature selection as in 
conventional machine learning (ML) and takes just 
a raw signal segment as an input. Such an 
approach is also called “end-to-end machine 
learning” [2]. Taking into account the success of 
the mentioned publication, the research 
community focused on applying this powerful tool 
using the data from publicly available sources, for 
instance, PhysioNet web-site [3]. It contains 
several databases like MIT-BIH Arrhythmia 
database [4], MIT-BIH Atrial Fibrillationdatabase 
[3] and PhysioNet Challenge 2017 [5] which 
includeECG records with atrial fibrillation and can 
be used for training and testing of machine 
learning models. This paper will be structured as 
follows: firstly, in the next chapter, we will 
describe publications related to arrhythmia 
classification via different neural networks. 
Secondly, we will make an overview of existing 

publicly-available arrhythmia datasets describing 
their advantages and drawbacks. Thirdly, in the 
fourth chapter, we will provide approaches for 
data preprocessing for neural networks training 
and in the fifth chapter will describe their 
characteristics. Next, in the sixth chapter we 
present a training configuration that was finally 
applied. In the subsequent chapter we will provide 
results obtained in several experiments. Finally, in 
the eighth chapter we will introduce our 
conclusions based on conducted experiments 
considering usage of different neural network 
topologies for arrhythmia detection. 

Purpose of the study. There are quite a lot of 
studies in the field of automated arrhythmia 
detection; the vast majority of them are using 
PhysioNet Challenge 2017 dataset and MIT-BIH 
arrhythmia database as benchmarks. Given 
papers may be divided into two major groups 
differing by their data processing pipeline.First 
type of pipeline is called a “step-by-step” 
approach and described in [6-10]. It implies whole 
ECG preprocessing (including annotation) and 
“manual” feature extraction (mean, std, median, 
kurtosis, skew, HRV features, wavelet features, 
features based on lengths of the PQ, ST segments 
etc.) before classification. The second one is “end-
to-end” approach; it implies that the model 
receives an input signal and produces a prediction 
without any intermediate steps. The most 
significant research in this field is previously 
mentioned in Stanford ML group publication [1]. It 
is based on a large non-public dataset collected 
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using iRhythm ECG patch. However, there are also 
plenty of papers that describe applications of 
convolutional neural networks on other datasets 
[11-14], and publications produced by 
participants of the PhysioNet Challenge [15-18] 
which showed near the state of the art 
performance. 

Despite the importance of a topic of atrial 
fibrillation and increased number of discussions 
after Stanford publication anda new Apple Watch 
feature release, there is still no unified benchmark 
for cardiological models (particularly for 
arrhythmia detection). For instance, the computer 
vision field has a well-known ImageNet dataset 
[19], provided by LSVRC challenge, which is used 
for testing the performance of multiclass image 
classification. However, there are three most-
used datasets (MIT- BIH Arrhythmia, MIT-BIH AF, 
PhysioNet challenge2017) from PhysioNet 
platform that is mostly mentioned in papers 
dedicated to AF detection tasks. Mentioned 
databases differ from each other by the number 
of classes, amount of records and ECG leads they 
were collected from. Detailed Description with 
empathized pros and cons of each dataset will be 
provided further in the chapter. 

Materials and methods. The MIT-BIH 
Arrhythmia Database was the first publicly 
available standardized database that can be used 
for cardiac dynamics research and performance 
evaluation of automatic arrhythmia detectors. It 
was collected during 1975-1980 at Boston’s Beth 
Israel Hospital in collaboration with MITon 25 
male subjects aged 32 to 89 years and 22 female 
subjects aged 23 to 89 years. A database contains 
48 half-hour records recorded from two chest 
leads (modified limb lead II and modified lead V1). 
For analysis, preferably first oftwo recorded leads, 
since QRS complexes on it have a normal shape. A 
big advantage of the given dataset is that it has an 
annotation of each beat (normal beats(N), 
premature ventricular contractions(V), 
supraventricular premature beats (S), or afusion 
of ventricular and normal beats (F)). At the same 
time,ECG intervals have annotations of the 
corresponding rhythm type (Atrial bigeminy, Atrial 
fibrillation, Atrial flutter, Ventric-ular bigeminy, 2 
heart block, Idioventricular rhythm, Normal Sinus 
rhythm, Nodal (A-V junctional) rhythm, Paced 
rhythm,Pre-excitation (WPW), Sinus bradycardia, 

Supraventricular tachyarrhythmia, Ventricular 
trigeminy, Ventricular trigeminy, Ventricular 
tachycardia). However, like in most medical 
datasets, both classes of beat types and rhythm 
types are very unbalanced and underrepresented; 
this means that records are hardly suitable for 
training arrhythmia detectors. 

MIT-BIH Atrial Fibrillation Database (AFDB) is 
also one of the datasets collected by Boston’s 
Beth Israel Hospitaland MIT. It is quite similar to 
MIT-BIH AFDB since ECG records were made from 
the same chest leads (lead II, leadV1). However, 
there are only 25 ten-hours records with rhythm 
annotation, whereas 23 of them also contain raw 
signal. As Its title suggests, database records 
contain atrial fibrillation episodes, in addition, 
atrial flutter, AV junctional rhythm and normal 
sinus rhythm are also available. Although a 
database has a limited number of records, they 
are quite long and keeping in mind a principle of 
patient-independent testing, can be sampled to 
train machine learning models for arrhythmia 
detection. 

PhysioNet/Computing in Cardiology (CinC) 
challenge 2017 goal was to perform the best 
classification performance of ECGs recorded on 
portable single-channel AliveCorec© devices. The 
Entire dataset contains 12,186 labelled training 
records and 300 validation records (labels were 
hidden during the challenge and used for 
leaderboard evaluation). All mentioned records 
are 9-61 seconds long annotated in one out of four 
labels(normal sinus rhythm, atrial fibrillation, 
alternative rhythm, and too noisy to consider it an 
ECG). Despite the fact that this dataset provides a 
quite big amount of labelled ECG records,there 
are a few disadvantages to keep in mind while 
working with it. First, devices that were used for 
recording do not require specific electrode 
placement and accept both LA-RA and RA-LA for 
the lead I as shown on Image 1.S o, about half of 
the records are inverted in terms of voltage and 
have to be normalized for further processing. 
Second, initial dataset labelling had some 
inaccuracies, since it was made by a single 
practitioner. This issue has not gone undetected 
during the challenge, so in the latest update of the 
dataset, the mostuntrusted records were revised 
and relabeled. After evaluating the pros and cons 
of described datasets, wechose Physionet  
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Fig. 1. An electrode placement schema for I ECG 

lead recording 

 
challenge 2017 dataset for further research. For 
initial data preprocessing, we used a FIR filter [20] 
with a cutoff range from 3 Hz to 50 Hz to remove 
power line and baseline noise. Also, the amplitude 
of all samples was scaled inthe range [0, 1]. As 
mentioned in chapter 3, the given dataset has an 
issue with the inverted signal, because of a 
specific type of ECG recorder. To eliminate this 
problem and fetch all provided samples, we 
applied a beat template matching method 
described by Goodelow [21]. Template matching 
approach requires signal annotation; thus, Pan-
Tompkins [22] algorithm was used. As far as the 
“noisy” class was underrepresented with only 46 
records, it was removed from the analysis. We 
also experimented with different lengths of 
dataset samples by taking 15, 30, 45 and 60 
seconds of the initial record. If the initial record 
was long enough to contain several fragments of 
a certain length, we used them to extend the 
dataset by sampling multiple samples without 
overlap from the single record. We will call such 
dataset configuration as extended. Inanother

 
Fig. 2: Normal Sinus Rhythm in comparison with 
AtrialFibrillation 

 
case, we just took the first required seconds and 
cut off the remaining part. Such a dataset we will 
call simple. For the records smaller than required 
length symmetric zero-padding was applied. 

Rhythm abnormalities are visually well 
recognizable on the ECG signal as we can see on 
Image 2. In particular, atrial fibrillation is 
characterized by absence of P-wave or 
appearance of the specific f-wave on the QT 
interval on the standard lead I. Therefore, as was 
proved before in [23], state of the art approaches 
from the computer vision, that are based on 
convolutional neural networks (CNNs), also can be 
used for mentioned task exploiting 1D 
convolution operation and show competitive 
results when compared to conventional feature-
based methods. In our research, we decided to 
testall neural network-based approaches starting 
from simple multilayer perceptron (MLP) to 
complex topologies like ResNet, DenseNet and 
combination of CNN and LSTM. Global Average 
Pooling was used in CNN models before a softmax 
layer to reduce dimensionality and have an ability 
to apply CAMapproach [24] for construction of 
attention maps. 

To have a baseline, we decided to take MLP as 
a predecessor of contemporary neural network-
based algorithms. It’s known that this method has 
restrictions related to dramatic increase of 
computational complexity for big input samples. 
Taking into account the size of the training set 
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(approximately 8000 records), a sampling rate of 
records which is 300 Hz, and length up to 60 
seconds, the number of hyperparameters to tune 
will be too high. To tackle this problem we decided 
to apply some tricks like downsampling or splitting 
long ECG fragments to shorter ones, which 
provided more training data and decreased the 
complexity of the model. A model itself composed 
of five layers with 450, 300, 100, 64 (fully-
connected), 3 (softmax) nodes, ReLU activation 
functions [25], and Dropouts [26] withrate 0.5. 
The amount of nodes for each layer and remaining 
hyperparameters values were selected based on 
cross validation. 

Convolutional Neural Network is a family of 
neural networks that uses learned filters to match 
certain templates in the input data. In terms of 
image processing, the mentioned square-shaped 
filter moves vertically and horizontally with 
certain steps. However, in case of ECG, the data in 
one-dimensional,accordingly, mentioned filters 
will also have a single dimension and move only 
along a time axis. For our studies, we decided to 
try a simple model with five layers which in turn 
comprised of 1D convolution, Batch 
Normalization [27], ReLU as activation,max 
pooling and dropout with rate 0.5. Kernel sizes 
varied starting from 12 on the initial layers to 6 on 
the last one, at the same time, stride were 
selected in range from 8 to 4. 

The reason we decided to apply such 
architecture is to test the performance of long-
short-term memory (LSTM) networks [28], which 
are highly effective in perceiving temporal 
dependencies in the data. However, LSTM units 
are quite computationally expensive, taking into 
account the size of the ECG segments(i.e. 30 
seconds x 500 Hz = 15000 input points). Adding 
Several convolutional layers will solve this issue by 
reducing the dimensionality and additionally will 
provide better data representation for LSTM 
layers. To test this hypothesis we took previously 
described simple CNN and added a LSTM layer 
with 100 nodes and a fully connected layer with 
65 nodes on top of it before a softmax layer. Given 
hyperparameters (amount of nodes in the Dense 
and LSTM layers) were chosen to reach the 
optimal performance of the model. 

ResNet is a specific architecture of deep 
convolutional neural networks that learns the 

residual representation functions instead of direct 
representation. It represents shortcut (skip) 
connections that fit an input from the previous 
layer to the next layer with no changes of the 
input. Stacking these blocks allows building 
deeper networks without the occurrence of the 
vanishing/exploding gradients problems. Initially 
the given approach showed its advantages on 
image classification tasks bywinning ILSVRC 2015 
and MS COCO 2015 in both detection and 
segmentation. Later, Stanford ML group 
introduced a study [1] where they trained 34 layer 
CNN with skip connections on a large dataset of 
64,121 ECG records from 29,163 
patients.Obtained model outperformed average 
cardiologist in the classification of 14 different 
types of heart rhythms disorders. Given paper 
points to the conclusion that deep CNNs with 
residual connections are promising techniques for 
ECG signal classification with different 
morphology. 

DenseNet (densely connected convolutional 
network) [29] is a topology that shows the state of 
the art performance in image classification tasks 
(CIFAR, SVHN, ImageNet) using fewer parameters 
compared to its closest contender ResNet. Given 
CNN architecture composed of densely connected 
blocks (dense blocks). In these blocks, each 
subsequent layer receives all output feature maps 
of previous layers, so the number trainable 
parameters compared to conventional 
convolutional models. Such structure gives direct 
access to the gradient from the loss, which in its 
turn prevents gradient vanishing/explosion.A 
major feature of Dense block is that it has the 
following structure: 

● Batch Normalization 
● ReLU activation 
● Convolution 

In which pre-activation happens since batch 
normalization and activation precede a 
convolution. 

Instead of summing residuals as in ResNet, 
DenseNet concatenates output feature maps. 
With no doubts, it’s in-efficient to concatenate 
tensors with different sizes. Therefore,all dense 
blocks have the same feature map size. 
However,dimensionality compression is essential 
for CNNs; for these purposes, transition layers are 
used. They contain Batch Normalization, 1x1 
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convolution and average pooling. There Are 
suspicious regarding the complexity of the model 
because concatenation of feature maps from all 
layers might lead to an extremely high number of 
parameters. Fortunately, DenseNethas quite 
narrow layers with up to 32 feature maps, as 
recommended by authors. 

All NN models were implemented on Keras 
framework[30] (with the TensorFlow backend 
[31]). Each model was trained during 80 epochs 
using Adam optimizer with adjustable learning 
rate and cross-entropy as an optimization loss 
function.The initial dataset was divided on 
training, validation and testing split in proportion 
70% / 15% / 15% accordingly. To prevent subject 
overfitting, samples with required length were 
fragmented before the train/test split. 

Results. Given dataset is quite specific and has 
its limitations,like severe class imbalance. For this 
reason, we decided to experiment not only with 
neural networks types and configurations but also 
with the formation of classes merging or not using 
them in particular training experiments. 
Conducting described experiments, we observed 
interesting results that will be described further in 
this section. According to 2017PhysioNet 
Challenge, average F1-score was used to evaluate 
the performance of participants, so we decided to 
follow the same rule for evaluation of our 
models.Firstly, we trained MLP to have a baseline 
for our further experiments. To train MLP, we had 
to overcome a curse of dimensionality, so the 
sampling rate was reduced from 300 Hzto 30 Hz 
Fourier method [32]. As expected, MLP tended to 
overfit and showed the worst performance 
compared to other models. Next, we decided to 
build a simple four-layer CNNwith filters of bigger 
size and stride to provide a sufficient down-
sampling before global average pooling and 
softmax activation.A global average pooling was 
used in most experiments to reduce a total 
number of parameters in the model and to have 
an ability of model interpretation using CAM (class 
activation map) approach [24]. As shown on the 
table, the simple model performed better than 
MLP (baseline), but still with low accuracy. Next, 
we attached a LSTM layer with 64 blocks between 
the simple model that was described earlier anda 
fully connected layer with 64 neurons that 
precedes a softmax activation. This configuration 

performed slightly better than the previous 
model, but still poor classification accuracy. Our 
Further steps were to try state-of-the-art (SOTA) 
topologies like ResNet and DenseNet to solve the 
given classification task. First, we decided to train 
ResNet as an earlier version CNN with indirect 
connections. A model contained five subsequently 
connected residual blocks with global average 
pooling on top before the softmax layer. Such 
topology performed much better and showed a 
result that is quite close to the top of the 
leaderboard in the PhysioNet/Computing in 
Cardiology Challenge 2017.Finally, we trained a 
DenseNet which contained five dense blocks and 
growth rate 12. It showed the best results with F1-
score 0.834 and accuracy. All results for both 
simple (S) and extended (E) test datasets are 
shown in Table 1. 

Besides classification performance, model 
complexity is also an important characteristic to 
analyze. Since we experimented with different 
types of NN, correspondingly, their complexities 
also varied. The number of parameters for each 
model is shown in Table 2. As we can see, the 
simplest model, in terms of the number of trained 
parameters, is DenseNet, and the most complex 
model is ResNet. Taking into account both 
accuracy and complexity metrics, we selected a 
DenseNet configuration as far as it is both the 
most accurate and the most light-weight model 
for solving given classification problems. 

Conclusion. In this work, we trained various 
deep neural network models starting from simple 
multilayer perceptron to SOTA topologieslike 
ResNet and DenseNet to classify ECG fragments 
onNormal Sinus rhythm, AFib rhythm and Other 
rhythms on different dataset configurations. The 
best test results were obtained on DenseNet using 
simple 45-second signal fragments.It is worth 
mentioning that ResNet showed relatively close 
performance. However, DenseNet has one 
significant advantage, thanks to its structural 
characteristics, it has significantly fewer 
parameters, so can be considered as more 
computationally efficient. Furthermore, the high 
efficiency of such algorithms will allow their 
integration directly into the stationary 
cardiographs and even into the wearable devices, 
which would bring the diagnostics of arrhythmias 
on the next level. Moreover, this work covers 
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Table 1.  
F1-score of trained NN models 

Window size 

Preprocessing 15 30 45 60 

S E S E S E S E 

MLP 0.2555 0.2590 0.2520 0.2492 0.2520 0.2487 0.2520 0.2539 

CNN 0.5574 0.6202 0.6095 0.6414 0.6138 0.6456 0.5963 0.5991 

CNN+LSTM 0.5636 0.6477 0.6244 0.6649 0.6491 0.6511 0.6508 0.6349 

ResNet 0.7314 0.7905 0.8090 0.8125 0.8252 0.8254 0.8226 0.81168 

DenseNet 0.7491 0.8008 0.8206 0.8111 0.8341 0.8163 0.8221 0.8221 

Table 2.  
Number of trainable parameters in different NNmodels 

 
Window size 

15 30 45 60 

MLP 379509 575709 782709 978909 

CNN 315907 315907 315907 315907 

CNN+ LSTM 353091 353091 353091 353091 

ResNet 1065347 1065347 1065347 1065347 

DenseNet 186364 186364 186364 186364 

 
most of the novel deep learning architectures and 
defines a new baseline starting point for further 
research in Atrial fibrillation detection based on 
the ECG signal. 
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